Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration.
نویسندگان
چکیده
Muscle regeneration requires the coordinated interaction of multiple cell types. Satellite cells have been implicated as the primary stem cell responsible for regenerating muscle, yet the necessity of these cells for regeneration has not been tested. Connective tissue fibroblasts also are likely to play a role in regeneration, as connective tissue fibrosis is a hallmark of regenerating muscle. However, the lack of molecular markers for these fibroblasts has precluded an investigation of their role. Using Tcf4, a newly identified fibroblast marker, and Pax7, a satellite cell marker, we found that after injury satellite cells and fibroblasts rapidly proliferate in close proximity to one another. To test the role of satellite cells and fibroblasts in muscle regeneration in vivo, we created Pax7(CreERT2) and Tcf4(CreERT2) mice and crossed these to R26R(DTA) mice to genetically ablate satellite cells and fibroblasts. Ablation of satellite cells resulted in a complete loss of regenerated muscle, as well as misregulation of fibroblasts and a dramatic increase in connective tissue. Ablation of fibroblasts altered the dynamics of satellite cells, leading to premature satellite cell differentiation, depletion of the early pool of satellite cells, and smaller regenerated myofibers. Thus, we provide direct, genetic evidence that satellite cells are required for muscle regeneration and also identify resident fibroblasts as a novel and vital component of the niche regulating satellite cell expansion during regeneration. Furthermore, we demonstrate that reciprocal interactions between fibroblasts and satellite cells contribute significantly to efficient, effective muscle regeneration.
منابع مشابه
Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle
Adult skeletal muscle possesses a remarkable regenerative ability that is dependent on satellite cells. However, skeletal muscle is replaced by fatty and fibrous connective tissue in several pathological conditions. Fatty and fibrous connective tissue becomes a major cause of muscle weakness and leads to further impairment of muscle function. Because the occurrence of fatty and fibrous connecti...
متن کاملEffect of Simulated Microgravity Conditions on Differentiation of Adipose Derived Stem Cells towards Fibroblasts Using Connective Tissue Growth Factor
Background: Mesenchymal stem cells (MSCs) are multipotent cells able to differentiating into a variety of mesenchymal tissues including osteoblasts, adipocytes and several other tissues. Objectives: Differentiation of MSCs into fibroblast cells in vitro is an attractive strategy to achieve fibroblast cell and use them for purposes such as regeneration medicine. The goal of this s...
متن کاملConnective tissue fibroblasts and Tcf4 regulate myogenesis.
Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription f...
متن کاملChapter 13 Complexity of Extracellular Matrix and Skeletal Muscle Regeneration
Skeletal muscle regeneration occurs by the activation, proliferation and fusion of muscle precursor cells (myoblasts) that usually lie in a satellite cell position on the surface of the sarcolemma beneath the external lamina (basement membrane) of myofibres. Thus these myoblasts (satellite cells), as is the whole surface of the myfibre and the neuromuscular junctions (NMJ), are in intimate cont...
متن کاملConnective Tissue Fibroblast Properties Are Position-Dependent during Mouse Digit Tip Regeneration
A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 138 17 شماره
صفحات -
تاریخ انتشار 2011